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Abstract We characterize the set of all individual and group strategy-proof rules on
the domain of all single-dipped preferences on a line. For rules defined on this domain,
and on several of its subdomains, we explore the implications of these strategy-proof-
ness requirements on the maximum size of the rules’ range. We show that when all
single-dipped preferences are admissible, the range must contain two alternatives at
most. But this bound changes as we consider different subclasses of single-dipped
preferences: we provide examples of subdomains admitting strategy-proof rules with
larger ranges. We establish exact bounds on the maximal size of strategy-proof func-
tions on each of these domains, and prove that the relationship between the sizes of
the subdomains and those of the ranges of strategy-proof functions on them need not
be monotonic. Our results exhibit a sharp contrast between the structure of strategy-
proof rules defined on subdomains of single-dipped preferences and those defined on
subsets of single-peaked ones.
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1 Introduction

The existence of non-trivial strategy-proof rules depends both on the domain of pref-
erences on which the rule is expected to operate, and on the range of alternatives that it
is allowed to choose from. With only two alternatives on the range, different variants
of strategy-proof rules can be defined, even for the universal domain (Barbera et al.
2011; Manjunath 2011). But if the range of a rule must contain three alternatives or
more, then non-trivial (non-dictatorial) rules can only be strategy-proof if their domain
is restricted appropriately (Gibbard 1973; Satterthwaite 1975). Thus, in principle, a
mechanism designer in charge of proposing a social choice function may want to
use two types of controls: one on the domain for which her design is intended, and
one on the range that it should cover. In this paper, we show that these two strategic
tools for design may not always be used independently. To do that, we concentrate
on the domain of single-dipped preferences, and on its subdomains. We study the
types of strategy-proof rules that one can construct on these sets of preferences, and
show that once the choice of a single-dipped domain is made, the maximal size and
form of their range is determined, in a rather tight manner. In particular, ranges will
have to be typically “small”. These results are in sharp contrast with the freedom that
the designer is allowed for, in the choice of a range, when the domain of the func-
tion is a subset of single-peaked preferences. We shall elaborate on this general point
later.

Let us now start to discuss single-dipped preferences. These preferences arise nat-
urally in several contexts. One of them is attached to the existence of some public bad.
Consider, for example, the decision on where to locate a facility whose neighborhood
is undesirable, like a prison, a dumping site or an incineration plant. It is natural to
assume that the worse allocation for each agent is the one that places the facility right
by their home, and that locations become better as they place it further away. When
the location of individual homes and of the facility can be identified with points on
a line, fixing a home location gives rise naturally to single-dipped preferences on the
facility location.

The same interpretation of points in a line as locations provides an argument for
single-peaked preferences, a much more studied and somewhat dual case that arises,
in the case when proximity to the public facility is desirable, rather than bad.

In fact, these two types of preferences also arise naturally from assumptions on the
fundamentals of very simple models, other than the location example we just started
with. For example, when agents with linear preferences must choose from the down-
ward sloping frontier of a set of feasible alternatives in a two-good model (see Figs. 1a
and 2a), one can identify this frontier with a segment of the line, over which individual
preferences will be single-dipped, or single-peaked, depending on whether the frontier
is convex or concave (see Figs. 1b and 2b).

The main purpose of this paper is methodological. We shall study different settings
where the preferences of individuals belong to subsets of those that are single-dipped,
and show that the ranges of strategy-proof rules on these domains must be severely
restricted in size and shape. As aresult, we can argue that controls over the domain and
controls over the range of the functions they may propose are not tools that a designer
can always use independently.
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b

Fig. 1 a Linear preferences over a convex frontier. b Induced single-dipped preferences by linear prefer-
ences over a convex frontier

In addition to and beyond making this methodological point, we also hope that
our insights on the form of strategy-proof rules defined on different subsets of single-
dipped preferences can provide guidance for the choice of specific ones to be used.
Indeed, we do provide a menu of rules that designers can choose from, when coping
with the sort of locational or distributional issues that we just described, in contexts
where the preferences of individuals conform to the single-dipped pattern. Moreover,
we provide examples of specific subsets of single-dipped preferences that we find
particularly attractive.

It is natural to compare the rules that are strategy-proof over single-dipped domains
with those that satisfy the same condition for single-peaked domains. The set of all
strategy-proof rules whose domain includes all single-peaked preferences was char-
acterized by Moulin (1980). These rules, called generalized median voter schemes,
constitute a rich class and contain many alternative procedures. The present paper
contains a characterization of those rules that are strategy-proof when the domain
includes all single-dipped preferences.!

An important feature that is common in both cases is that all rules that are strat-
egy-proof on each of these domains, is also group strategy-proof. This is because
both satisfy a condition called sequential inclusion (see Barbera et al. 2010) that

! There are other characterizations: see Peremans and Storcken (1999), Manjunath (2010).
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b

Fig. 2 aLinear preferences over a concave frontier. b Induced single-peaked preferences by linear prefer-
ences over a concave frontier

guarantees the equivalence of these two otherwise different incentive-compatibility
requirements.?

However, this coincidence regarding the equivalence of individual and group strat-
egy-proofness does not carry over other characteristics of our rules on these two
domains. In particular, they dramatically differ regarding the characteristics of their
ranges. In the case of single-peaked preferences and their subdomains, the range of
strategy-proof functions can often consist of the whole set of alternatives.’ By con-
trast, we will show that in domains where all single-dipped preferences are feasible,
the range of strategy-proof rules contain at most two alternatives. This striking limi-
tation is only one instance of a more general fact: that the size of the maximal ranges
for strategy-proof rules on families of single-dipped preferences is endogenously pre-
determined by the nature of the domains that it must be defined on. This leads us to
consider different subdomains of single-dipped preferences, to establish the maximal

2 Other analogies between single-dipped and single-peaked domains were emphasized in Saari and Val-
ognes (1999). As we shall see, our emphasis is on their differences, that are also substantial on some
accounts.

3 This is true for rules defined on the full domain of single-peaked preferences, and for many other subdo-
mains. To get a full range it is sufficient (though not necessary) that any alternative is top for each agent at
some admissible preference.
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sizes that the range of strategy-proof rules over them, and to exhibit examples of rules
where these sizes, that can certainly be larger than two, are effectively attained.

Of course, all strategy proof rules on the domain of all single-dipped preferences
are also strategy-proof on its subdomains. But as these become more restrictive, new
strategy-proof rules may arise. Some of those that we describe are of special interest,
and all of them will still be group strategy-proof, as a result of our already mentioned
equivalence result.

The work of Peremans and Storcken (1999) is an important predecessor of ours.
Indeed, they already pointed at the equivalence between individual and group strat-
egy-proofness in subdomains of single-dipped preferences, a phenomenon that we
can rationalize and extend because we now can check that the condition of sequential
inclusion is satisfied on any such subset of profiles. Peremans and Storcken started a
systematic study of restrictions imposed by strategy-proofness on the ranges of rules
defined for special subdomains of single-dipped preferences. We improve on the bound
that they propose and we analyze several new cases for which we can also provide
tight results. However, there is no denial that theirs is a pioneer study of the subject.

A recent paper by Manjunath (2010) provides a result that is very similar to the
one we obtain for the domain of all single-dipped preferences, in that it also shows
that the range of rules must be of size two, and also provides a characterization of all
strategy-proof rules in that case. The main differences are that, unlike Manjunath, we
do not impose the requirement that rules are unanimous and we do not concentrate
on a bounded interval in the real line, and this allows us to be slightly more general
on those points. Another difference is that we use a result of our own in the charac-
terization of the rules (see Barbera et al. 2011), while he appeals to a previous result
by Larsson and Svensson (2006). In that specific aspect, our paper and Manjunath’s
seem to be nicely complementary. After that our contribution, as already explained,
takes the direction of exploring new subdomains and to provide additional results on
the maximal sizes of ranges allowed by the strategy-proofness requirement.

Other literature where single-dipped preferences and strategy-proofness are stud-
ied refers to the provision of private goods, either in the problem of allocating an
infinitely divisible good among agents (see Klaus et al. 1997 and Klaus 2001) or in
assignment problems of an indivisible object (see Klaus 2001). Ehlers (2002) extends
the deterministic model and allow allocation rules to be probabilistic.

The paper is organized as follows. Section 2 contains the model and definitions
while Sect. 3 encompasses the results concerning the set of all single-dipped pref-
erences. Finally, in Sect. 4 we gather some examples of rules for subdomains of
single-dipped preferences and also the results concerning the size of the range of
strategy-proof rules on such subdomains.

2 The setup and definitions

Let A be a finite set of alternatives* and N = {1,..., n} be a finite set of agents. Let
‘R denote the set of admissible preferences for any agent i € N, such that individual

4 All results in Sect. 3 hold if A is any closed interval in the real line or the real line itself.
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preferences are preorders (complete, reflexive, and transitive binary relations on A).
We denote by R; € R an admissible preference relation for agent i and let as usual, P;
and /; be the strict and the indifference part of R;, respectively. A preference profile,
denoted by Ry = (Ry, ..., R;),isanelementof R" =R x --- x R.LetC,S C N
be two coalitions such that C C S and ¢ and s denote their cardinality. We will write
the subprofile Rs = (Rc, Rs\c) € R’ when we want to stress the role of coalition
C in S. Then the subprofiles Rc € R and Rs\c € R°¢ denote the preferences of
agents in C and in S\C, respectively. When S = N, we simplify notation by using
(Rc, Rnv\c) as (Rc, R—¢).

We now define formally the notion of single-dipped preference relations relative to
a given order of alternatives.

Definition 1 A preference relation of individual i € N, R; is single-dipped on A
relative to a linear order > of the set of alternatives if

(1) R; has a unique minimal element d; (A), called the dip of i, and
(2) Forall y,z € A

[di(A) > y>zorz>y>di(A)]— zPy.

Let D-. denote the set of all single-dipped preferences relations relative to > while
R~ C D. denote a subset of single-dipped preference relations relative to >. A pref-
erence domain of single-dipped preferences will be denoted by R” = x;enR; where
foreachi € N, R; = R-.0

Note that single-dipped preferences satisfy one of the forms of value restriction, as
defined in Sen and Pattanaik (1969).

A social choice function (or arule) is a function f : R? — A. Let A s denote the
range of the social choice function f.

We will focus on rules that are nonmanipulable, neither by a single agent nor by
a coalition of agents. We first define what we mean by a manipulation and then we
introduce the well known concepts of strategy-proofness and group strategy-proofness.

Definition 2 A social choice function f is group manipulable on R” at Ry € R”
if there exists a coalition C C N and R € RS (R] # R; for any i € C) such that
f(R, R_c)P; f(Ry) foralli € C.We say that f is individually manipulable if there
exists a possible manipulation where coalition C is a singleton.®

Definition 3 A social choice function f is group strategy-proof on R” if f is not

group manipulable for any Ry € R”. Similarly, f is strategy-proof if it is not indi-
vidually manipulable.

5 We define single-dipped domains as cartesian products of sets of individually single-dipped preferences,
all of them relative to the same order. The cartesian product structure is essential for the analysis of strat-
egy-proofness. The additional implicit assumption that the sets of admissible preferences for all agents are
identical is not essential, but allows us to lighten notation and provides enough richness for our purposes.

6 Our definition requires that all agents in a coalition that manipulates should obtain a strictly positive
benefit from doing so. We consider this requirement compelling, since it leaves no doubt regarding the
incentives for each member of the coalition to participate in a collective deviation from truthful revelation.
For the analysis of a stronger version of group strategy-proofness in the present setting, see Manjunath
(2010).

@ Springer



Domains, ranges and strategy-proofness 341

Notice that the domains of our social choice functions will always have the form of
a cartesian product. This is necessary to give meaning to our definitions of individual
and group strategy-proofness.

Barbera et al. (2010) showed that any subset of single-dipped preferences profiles
satisfies a domain condition called sequential inclusion. They also showed that for
domains satisfying such condition, strategy-proofness and group strategy-proofness
turn out to be equivalent (see next Remark 1). From now on, we will use strategy-
proofness and group strategy-proofness indistinctly.

Remark 1 (See Theorem 1 in Barbera et al. 2010) Any strategy-proof rule f defined
on R? C D? is group strategy-proof.

3 Strategy-proofness on D?

In this section we provide a characterization of all strategy-proof rules on the set of all
single-dipped preferences. After reminding the reader of some facts that are relevant
for our purposes, we establish that the range of these functions must contain at most
two alternatives. That is, all non-constant strategy-proof rules on the domain should
establish which pair of preselected alternatives prevails. We then combine this fact
with a characterization result on strategy-proof rules with range two, in order to get
the characterization.

We start by stating a well-known result that applies for any domain of preferences,
not only for single-dipped ones. We include its straightforward proof, for the sake of
completeness.

Definition 4 Let x;cyR; € R" such that R; may differ from R ; for any i, j € N.
A social choice function f is Pareto efficient on Ay if for any Ry € X;eyR; € R"
there is no alternative x € A ¢ such that x P; f(Ry) foralli € N.

Lemma 1 Any group strategy-proof social choice function f on XjenR; is Pareto
efficient on the range.”

Proof By contradiction suppose there exist Ry € X;enyR; and x € Ay such that
xP; f(Ry) for all i € N.Let R}, such that x = f(R)). Let S C N be the set of
agents i such that R; # R;. Note that § # @. Then, S manipulates f at Ry via R§
which contradicts group strategy-proofness. O

Peremans and Storcken (1999) show that as a consequence of their Lemmas 3 and
4, any given strategy-proof rule on any subdomain of single-dipped preferences has at
most 2" alternatives in the range. In particular this upper bound is determined by the
cardinality of the set of admissible profiles when each agent has only two admissible
preferences (leftist, i.e., the order of alternatives according to the “smaller than” rela-
tion and rightist, i.e., the order of alternatives according to the “greater than” relation).
This upper bound can be attained for this very restricted domain provided that there are

7 The definition of group strategy-proofness is valid for any cartesian product of individual domain of
preferences.
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enough feasible alternatives. We obtain other bounds for the size of the range, which
depend on the size and nature of the preferences that constitute admissible domains.
The first bound applies when all single-dipped preferences are admissible and it is
expressed in Theorem 1: only two alternatives may be in the range! Other interesting
bounds for the sizes of ranges under different subdomains of single-dipped preferences
are obtained in Sect. 4. In the next Theorem | we refine such Peremans and Storcken
(1999)’s result by obtaining a more accurate upper bound when all single-dipped
preference profiles are admissible.

Theorem 1 Any strategy-proof social choice function f on DY is such that #A ; < 2.

Note, as we show in the following example, that the result in Theorem 1 can not be
generalized to all subsets of single-dipped preferences. In the next section we stress
this point.

Example 1 Let N = {1,2}, A = {x, y, z} where z > y > x and the set of individual
admissible preferences is R~ = {R, R’, R} where x PyPz,xP'zP’y, and zPyPx.
Note that R2> is a subset of single-dipped profiles relative to the above defined order
of alternatives. The social choice function f on R2> defined as in Equation (1) is
strategy-proof and the size of its range (#A ) is 3 > 2.

f RQR/2R2
Ri|x |x |y

1
CACNERE (M
Ry |z

Before proving Theorem 1, we introduce a list of relevant preferences over triples
of alternatives, some useful notation, and other interesting results.

A list of relevant preferences. Notice that for any triple of alternatives in A, say ¢,
formed by x, y, z where z > y > x, the restriction of any Ry € R? € D? tox, y, z,

say Ry.r = (Ri4, ..., Ry1), takes the form of the following admissible relations (see
list (2)):
xPly, xPlz, and lez
xPzzPZy
xI3z, and zP3y (2)
ZP4xP4y

2Py, zP%x, and yR’x.

We refer to such preferences by their superindex, calling each one of them type /
preferences. Informally, we’ll say that type 1 preferences are “leftist on #”” and that
type 5 preferences are “rightist on ¢”. Note that type 1 preferences may represent in
fact two possibilities, either y P!z or else yI'z. Similarly, for type 5 preferences we
may have yP>x or yI°x.

Notation: Takeatriplet formedbyx, y,z € AandS C N.Forany! € {1, 2, 3, 4, 5},
denote as Ré’t any subprofile of preferences of agents in S, where for any j € S, Rﬂ’t

is such that its restriction to {x, y, z} coincides with R! in list (2) above.
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Domains, ranges and strategy-proofness 343

Let us point out that the following three results apply for any subdomain of sin-
gle-dipped preferences profiles. The first lemma states a property that any subdomain
of single-dipped preferences must satisfy. Lemma 2 guarantees, when considering
strategy-proof rules, the existence of two individual preferences for any triple ¢ of
alternatives in the range, one that is “leftist on #”” and one that is “rightist on ¢”.

Lemma 3 ensures that any alternative in the interior of the range can be obtained
as the outcome of a preference profile where individual preferences are either “leftist
on t” or “rightist on #”.

Lemma 2 Let f be a strategy-proof social choice function on R C D with#Ay >
3. For any triple t formed by x, y, z € Ay such that z > y > x, there exist RV and
R eR..

Proofleatrlplet Xx,y,z € Aysuchthatz > y > x, and let x = f(R ),y =
f (Ry),and z = f(Rx). Suppose first that there does not exist any type 1 preference
on t. That is, for any Ry € RZ only preferences of type 2, 3, 4, and 5 may coexist.
Then, N would manipulate f at Ry via Ry since z f(RN)P f(RN) = y for
any i € N which is a contradiction to group strategy-proofness. Thus, there exist
Ry € R such that restricted to ¢ there are type 1 preferences.

Suppose that there does not exist any type 5 preference on ¢. That is, for any
Ry € RZ only preferences of type 1, 2, 3, and 4 may coexist. Then, N would manip-
ulate f at Ry via R}, since x = f(R/ )P; f(RN) = y forany i € N whichis a
contradiction to group strategy-proofness. Thus, there exist Ry, € R” that are type 5
preferences when restricted to ¢. This ends the proof. O

Lemma 3 Let f be a strategy-proof social choice function on R". C D” with#Ay >

3. For any triple t: x,y,z € Ay,z >y > X, theny = f(Ré’t, stv’is) for some

SCN.

Proof Lett bethetriplex,y,z € Af,z>y > x,andy = f(RN) Define §; = {i €
N:Ri;= RV forl € {1,2,3, 4, 5} Consider the set of agents in N\(S1 U S5) and
define § = {i € N\(S1USs) .d(Rl) > y}. By strategy-proofness, f(RE , N\S) =

y. The argument is as follows: observe first that f (R%’t, R N\E) € [y, z), otherwise S
would manipulate f at Ry via Ré’t and get an outcome strictly better than y. Sec-
ond, f(ng’t, Ry5) = y. Otherwise, if f(Rgf, Ry\5) € (v, 2), S would manipulate
f atl(tR{, RN\E) via Ry and get y, since any j € S, ijl"f(Ré’t, RN\E)‘ Thus,
JRG Ry5) = - B

Define now S = {i € N\(S;1 USs) : d(R;) < y}. By strategy-proofness,
f (R%t, Ré”, ﬁN\(EU?)) = y. The argument is similar to the one above: first
note that f (R%’, Ré’[, R N\(§u§)) € (x,y]. Otherwise, S would manipulate f at
(Ré’l NN\g) via Ri’t and get an outcome better than y for any j € S. Second,
F(RY, l’ R’N\(SUS)) = y. Otherwise, if f(RA l’ Ry\sus) € (.9, S
would manlpulate f at (Rg ,R%[, ﬁN\(SUS)) via RS and get y, since any j €

rd 5.t 5.t 1.t & = 5.t Lt 5 _ N _
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The following result obtained by the two previous lemmata assures that for any
triple £: z > y > x where x, z € Ay, if alternative y is in the range then there can not
exist simultaneously a type 2 and a type 4 individual preference over the triple ¢.

Theorem 2 Let f be a non-constant strategy-proof social choice function on R% C
D". Letx,z € Ay, andatriplet : z >y > x for which there exists R*',R*" € R.-.
Then, y ¢ Ay.

Proof If #A y = 2 the result trivially holds. Suppose that #A y > 3. By contradiction

suppose that y € Ay. Let x,z € Ay, and the triple t: z > y > x. By Lemma 2

there exist R""" and R>' in R~.. Moreover, by Lemma 3, y = f(Ré’t, stv’is) for some

SCN.
By group strategy-proofness, f (R;’t, Rfv’is) € (y,z] U {x} (otherwise, coalition

N\S would manipulate f at (Rg", Ry{ ) via Ry!s. By Lemma , f(Rg", Ryl ) = x)
and again by group strategy-proofness, f (Ré’l, R?\,’i 5) = x (otherwise, coalition N\§
would manipulate f at (Ré’t, Ri}is) via R?\;is).

By group strategy-proofness, f (Ri:t, R15v’<s) € [x,y) U {z} (otherwise, coalition
S would manipulate f at (Rg”, R15v’<s) via Rg’t and get f(Rg’t, RIS\;'\S) = z), and
again by group strategy-proofness, f (Rg’t, R15v< ) = z (otherwise, coalition S would
manipulate f at (R;", RIS\,’<S) via Ré’t).

By group strategy-proofness, f (R?’t, R;L\/’i ) = z (otherwise, coalition N\ S would
manipulate f at (Rg’t , R;‘\;’\ ¢) via RIS\,Z\ gand get f (R?t, RISV< 5) = 2), but then coalition
S would manipulate f at (Rg’t, Rfv’is) via Ré’t and get f(R;’t, Rf\,’t\s) = x. Thus, we

obtain a contradiction. O

Note that Theorem 2 generalizes Theorem 1 above. And in fact Theorem 1 is a
straightforward corollary of Theorem 2. Observe that if R”. = D%, for any ¢ in A:
z >y > x there exist R> and R*' in R... Thus, recursively applying Theorem 2 we
end up showing that the #A y < 2.

Observe that by Theorem 1, the following result straightforwardly holds.

Corollary 1 There is no strategy-proof and onto social choice function on the domain
of all single-dipped preferences if #A > 3.

In Barbera et al. (2011), we obtained a characterization of all strategy-proof rules
with a binary range (that is, Ay = {x, y} for some pair x, y of alternatives in A) by
means of two conditions that we define below. Let X(Ry) = {i € N : xP;y} and
Y(Ry) ={j € N : yPjx} for each preference profile Ry € RZ.

Definition 5 A social choice function f with a binary range is essentially xy-mono-
tonic if and only if forall Ry, R}, € R’ suchthat R, = R), forany h € N\[X (Ry)U
Y(RN)] N N\[X(R}) UY(R})], the following holds:

(1) If X(R)) 2 X(Ry), Y(Ry) 2 Y(R),) (with at least one strict inequality), and
f(Ry) = x, then f(R},) = x; and
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Domains, ranges and strategy-proofness 345

(2) If Y(R)) 2 Y(Rn), X(Ry) 2 X(R),) (with at least one strict inequality), and
f(Ry) =y, then f(R}) = y.

Definition 6 A social choice function f with a binary range is essentially xy-based
if and only if for all Ry, R}, € R” such that X (Ry) = X(R}), Y(Ry) = Y(R)),
and R, = R}, Vh € N\[X(Ry) UY(Ry)], then f(Ry) = f(R}).

These two conditions characterize strategy-proof social choice functions with a
binary range.

Theorem 3 (see Barbera et al. 2011) Let f be a social choice function on R”. < R"
with a binary range. Then, f is strategy-proof if and only if f is essentially xy-mono-
tonic and essentially xy-based.

We already know, from our previous work, that essentially xy-monotonicity and the
essentially x y-based condition are independent whatever the domain of preferences is.
For the sake of completeness, in the following example we present two rules violating
only one of them when we concentrate on the set of single-dipped preferences profiles.

Example 2 Let N = {1,2},A = {x,y,z} where z > y > x, and for any i €
N, the set of individual admissible preferences is R~ = {R!, R?, R*, R>} where
xPlyPlz,x P2z P2y, zP*x P*y and z P>y P> x. Note that R? is the subset of all strict
single-dipped profiles relative to the above defined order of alternatives. Observe that
f defined in Eq. 3 satisfies essentially xz-based but it violates essentially xy-mono-
tonicity. Note also that fdeﬁned in Eq. 4 satisfies essentially xy-monotonicity but it
violates essentially xz-based. Both f and fare manipulable.

TTR2 R4 R3
f [RIR3RIRS
Rilz |[z][x |«
Ri|z |z [[x]|x A3)
R‘l‘x x |x |x
fo x |x |x
f |RIR3|R5| RS
Rl 2
Rilx |x [z |z (4)
Rilz |z |z |z
Rz |z |z |z

Therefore, as a corollary of Theorems 3 and 1, we can state the following result.

Proposition 1 Let f be a social choice function on D~ with a binary range. Then, f
is strategy-proof if and only if f is essentially x y-monotonic and essentially xy-based.

4 Strategy-proofness on restricted single-dipped domains

We now present three families of subdomains of single-dipped preferences. For two
of them we describe classes of rules that are strategy-proof on these domains, and yet
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have ranges of size larger than two. For the third one, we show that even it is a subset
of one of those two, we are back to the situation where the range of any strategy-proof
rule on it can only contain at most two alternatives.

Our analysis is not exhaustive. We do not work on all possible subdomains of sin-
gle-dipped preferences, nor do we claim that the rules we exhibit exhaust the set of
all those satisfying strategy-proofness on the respective domains. Our aim is a more
limited one, hopefully interesting for the reader. It is to show that there is no inherent
association between the fact that preferences are single-dipped and the need for the
range to be limited to size two, nor between this limitation of the range and the fact
that only two alternatives can be the best for agents, under single-dipped preferences.
These connections are only effective when all single-dipped preferences are in the
domain of our rules.

We present our examples for the case where domains consist of preferences defined
on a finite set of alternatives. With some changes and qualifications, our examples and
results could also extend to the case where the set of alternatives is a continuum.
However, as already remarked by Peremans and Storcken (1999), the ranges will still
be finite in that case. Again, this is a substantial difference with the case of single-
peakedness.

Before we formally present our subdomains, let us informally describe the kind of
preferences that they try to capture. As we have already said, their use in the paper is
instrumental, as examples. Yet, we like to stress that they represent meaningful and
attractive types of preferences, that may arise in applications.

We present the underlying idea by referring to preferences on a line. Clearly, sin-
gle-dipped preferences correspond to agents whose best alternatives are extreme, and
that may well swing from one end of the spectrum to the other. A preference where
one end of the line is best and the other end of the line is worse can be single-dipped.
In fact, nothing precludes that the closest alternative to the peak may be the dip of
that preference. What our restrictions avoid are these extreme swings in preferences,
by introducing a systematic bias in favor of alternatives that lie “close” and “on the
same side” than the agent’s peak. For example, a preference with bias 3 would be one
where, should one end of the line be the peak, the next best 3 alternatives in the order
would be those that are immediately contiguous to the best one. So, the position of
the dip would be bounded away from that of the peak. In addition, the preferences
of agents would only “swing” to the other end of the line after a certain number of
alternatives in the neighborhood of the peak have already been ranked above.

This same underlying idea gives rise to domains with different properties, depend-
ing on the size of the bias relative to that of the total number of alternatives. If the
bias is in favor of a “small” number of alternatives (less than half the total number
of possible choices), then there will be locations that can be the dips of voters whose
peak is in either of the extremes. Whereas, if the bias is large enough, then the set of
possible dips for people for peaks on one end of the line, and for people on the other
end are disjoint. It turns out, as we shall see, that this has important consequences on
the potential ranges of strategy-proof functions, whose size will be different in one
case and in the other.

We shall now turn to formal definitions. But let us emphasize again that single-
dipped domains with a bias reflect a rather natural phenomenon: that of agents who
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try to avoid intermediate positions, but still have a distinctive preference for one end
of the line than for the other. These preferences may well arise in applications.

We will let the set of alternatives be the integer interval A = [0, 1,2, ..., k], k > 3.
For k < 2, the subdomains we define below would give rise to non-interesting results.
We denote by [a, b] the set of integer numbers between a and b both included, while
(a, b) excludes both a and b.

Definition 7 For any given set of alternatives of size k+ 1, and any integer 7, 0 < h <
k, the set Dy, of single-dipped preferences with an & bias consists of all preferences
R that:

(1) are single-dipped, and
(2) either hPs foralls € [h + 1, k], or else

(k —h) Psforalls € [0,k —h —1].

Note first that condition (2) implies that alternatives 0 and k will not be indifferent.
Notice also that if # = 0, condition (2) would have no bite and we would be back to
the case of single-dipped preferences, where 0 and k are not indifferent. Moreover if
h = k — 1, then the only two admissible preferences are those where O is the best and
k is the worst alternative, or its opposite.

In Figure 3 we present some preferences that satisfy our definition 7 for k = 6 and
h = 2. We have chosen to represent some of those preferences that have 0 in first
place, so that their dip cannot be in 1 or 2, and all other alternatives must be ranked
below 2.

Notice also that, for any fixed k, Dy & C Dy, where 0 < h < /' < k. Furthermore,
observe that if 1 < 2, the set on which the dips of agents with tops in 0 and agents
with tops on k can be located are overlapping, and their intersection is the segment

= (h, k — h) whereas, if h > %, then the set 1" is always empty, and the prefer-
ences of all agents in the segment C" = [k — h, h] are strictly increasing or strictly

Fig. 3 Some single-dipped
preferences with a bias
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decreasing. These two subdomains will allow for different types of strategy-proof
rules.

We now present, for each of these two domains, examples of group strategy-proof
rules whose range size is larger than two. These examples are sufficient to prove that
the bounds we establish later on are actually tight. We also feel that they provide strong
hints toward what could be a more applied reading of our work here, as they point
to the possible types of strategy-proof rules that can be defined in our subdomains.
Indeed, they contain recipes for constructing rules that are strategy-proof and contain
ranges “‘as large as possible” when the domain of preferences are biased and single-
dipped. The reader can easily understand that, although we define a specific rule to
serve our methodological purposes here, other similar rules can be easily constructed
as variants of the ones we propose. Moreover, we believe that not much room is left,
beyond these possible variants, to define any other rules that would be substantially
different and satisfy the same properties.

Example 3 Fork > 3,0 < h < %, define a rule on Dy, as follows:

Fix a range consisting of four outcomes, ry, 12, 13, r4 such that ri < rp < h and

r3>rq4 >k—h.
For a given profile Ry € (Dgp,)", then

— Let f(Ry) = ry (respectively, rp) if (1) #{i € N : roPir3} > #{j € N : r3Pjr2}
and
Q)#i € N :r3Pirpand r Pirp} > #{j € N : r3Pjry and ro Pjry} (respectively,
<).

— Let f(Ry) = r3 (respectively, r4) if (1) #{i € N : r3Pir2} > #{j € N : r2Pjr3},
and
Q) #{i € N :rpPir3 and r3Pira} > #{j € N : ro Pjr3 and rq Pjr3} (respectively,
<).

Informally, we could describe the rule as follows. Agents first vote by majority
whether the outcome should be in {rq, 2} or {r3, r4}, and then, those disagreeing with
this majority vote again by majority to determine which of the two chosen alternatives
should come out.

The rule is strategy-proof, and its range contains, by construction, four elements.
The argument for (individual) strategy-proofness is as follows. Since preferences are
single-dipped with a bias, all agents either prefer both r1 and r; to both r3 and ry,
or vice-versa. Hence, they will try to ensure that the outcome is any one of the two
that they prefer, and no voter has a better strategy than supporting their best pair. In
the second vote, agents who did not get their best alternatives pre-selected can still
express their preferences between the other two, and either support the most extreme
outcome or else get the less extreme one. Again, supporting their preferred alternative
in this new binary vote is a dominant strategy. Group strategy-proofness is derived
from Remark 1, that our domain satisfies sequential inclusion.

This rule provides an example of how, by restricting the domain of definition of our
social choice functions, we may get group strategy-proof rules with a range larger than
two. Remark that, contrary to what happened in richer domains, the rule we propose
is strategy-proof but requires information beyond knowing what is the preferred alter-
native of each agent on the range. This is worth remarking because for many domains
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it is known that strategy-proof rules must only use information regarding the “tops
on the range” of individual preferences. Our domains are such that this informational
simplicity requirement can be skipped.

The choice of a range in this example is not capricious. The following theorem
proves that, in the domain Dy, with h < ’%, this is the larger size of ranges admitting
a strategy-proof rule.

Proposition 2 Letk > 3,0 < h < % There is no strategy-proof social choice func-
tion f : (Dgp)* — A with #Af > 4.

Proof The proof consists of two steps.

Step 1: If #A y > 3, no alternative in the interval (1, k — h) belongs to the range of f.
Proof of Step 1: Lety € (h, k — h) and let x, z € Ay such that x < z without loss of
generality. Observe that wherever the triple #: x, y, z, belongs to and for any possible
order of them, there exist some preferences R>! and R*' in Dyy,.

If z >y > x,by Theorem2, y ¢ Ay.

If z > x > y (respectively, y > z > x), if we assume that y € Ay then by
Theorem 2 we obtain that x ¢ Ay (respectively, z ¢ Ay) which is a contradiction.
This shows Step 1.

Thus Ay C [0, R]U [k — h, k].
Step 2:#(Af N[0, h]) <2and# (Ay N[k —h, k]) < 2.
Proof of Step 2: Let us show that # (A Nk —h, k]) < 2 (a similar argument would
follow to show that # (Af N[0, h]) < 2). Suppose that there exists S C [k—h, k]NAf
such that#S > 3. Observe that for any triple in [k — &, k], there exist some preferences
R?>!" and R*' in Dy, Thus, fixed any pair x°, z° € S, 20 > x9, forany y € § such that
D>y>a0y¢A r by Theorem 2. Repeatedly applying Theorem 2 for all different
pairs xbzb e §,x9 > x!, z! > 70 we obtain that #S < 2 which is a contradiction
and shows Step 2.

Thus #A; < 4. O

Now, let us consider the following rules for the domain Dyj;, with h > %

Example 4 For k > 3, % < h < k — 1 define a rule on Dy, as follows:

Fix four outcomes, 1, rp, r3, r4a suchthat 0 <ry,rp <k —hand h < r3,rqs <k.
For a given profile Ry € (Dyp)",

— Let f(Ry) = rp (respectively, rp) if (1) OP1k, 0Pk, and (2) #{i € N\{l,2} :
r1 Piry} > (respectively, < )#{j € N\{1,2} : rp Pjr}.

— Let f(Ry) = rq (respectively, r3) if (1) kP10, kP>0 and (2) #{i € N\{l,2} :
r4Pir3} > (respectively, <) #{j € N\{1, 2} : r3Pjr4}.

— Let f(Ry) = min{h, k — h +#{i € N\{l1,2}: kP;0} if 0Pk and k P,0 or k P;0
and 0 Pxk.

Informally, we could describe the rule as follows. If agents 1 and 2 agree on their
top then they select only two alternatives out of which the rest of agents will have to
choose one. If agents 1 and 2 disagree on their top then the outcome will be an alter-
native within the interval [k — &, h] and outcome will depend again on the preferences
of the remaining agents (notice that their preferences on this interval will be either
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leftist or rightist). Let us briefly describe why this rule is strategy-proof. Since their
preferences have an £ bias, if 1 and 2 both prefer O to k, then they both prefer r; and
r, to all other alternatives in the range. Hence if both agree that O is best, it is optimal
for them to declare O and to obtain either r| or r,. Similarly if both agree that k is
best. And if agents 1 and 2 disagree, then it is best for both of them to avoid extreme
outcomes r1, 12, r3 and r4 and to ensure through their sincere vote that the outcome
lies in the range [k — &, h]. Given the votes of 1 and 2, the choices of the rest of the
agents are either a binary election or else a vote on their best element on [k — £, ]
resulting in some outcome in this interval. In each of these three cases, being truthful
is a dominant strategy for all them.

Let us remark that depending on &, & and n, the range of these functions can be as
large as min{2h — k + 5, 2"}.

In fact, this example provides an upper bound for the size of the range of strategy-
proof rules on Dy, with h > % as proven in the following proposition.

Proposition 3 Letk > 3 and % < h < k — 1. There does not exist any strategy-proof
social choice function f : (Dgp)" — A such that #A y > min{2h — k + 5, 2"}.

Proof Let h < k — 2. We only need to show Step 1:

Step 1: # (Af N (0, h)) <2and # (Af Nk —h, k)) <2.

If these two statements in Step 1 hold, then the maximum number of alternatives in
the range is four plus the maximum number of alternatives in the range that belong to
the interval [k — h, h]. Thatis, #Ay <242+ (h — [k —h — 1]) = 2h — k + 5. This
would end the proof of this Proposition.

Proof of Step I: Let us show that # (A s N (0, h)) < 2 (a similar argument would fol-
low to show that # (A s N (k — h, k)) < 2). Suppose that there exists S € (0, /) N Ay
such that #S > 3. Observe that for any triple in (0, /), there exist some preferences
R>! and R*! in Dyy,. Thus, fixed any pair x°, 20 € S, z° > x0, forany y € S such that
D>y>x0y¢A r by Theorem 2. Repeatedly applying Theorem 2 for all different
pairs xb 7zl € §,x% > x!, 71 > 79 we obtain that #S < 2 which is a contradiction.
This shows Step 1. O

Finally, let us consider a third subdomam of preferences with an £ bias, one that
restricts the domain Dy, with h < 5 Spec1flcally, we will consider the set th

Definition 8 Let ﬁkh be the domain formed by preferences that
(1) belong to Dyp, with h < % and
(2) d(R;) € I" = (h, k — h).

It turns out that, like in Theorem 1, it is now only possible to define strategy-proof
rules on this subdomain of single-dipped preferences if the range is restricted to two
alternatives at most, as shown by the following result.

Proposition4 Letk > 3,0 < h < ’% There is no strategy-proof social choice func-
tion f: (D))" — A with#A; > 2.
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Proof The proof consists of two steps.
Step I: # (Af N[0, h]) < Land# (Ay N[k —h, k]) < L.
Proof of Step 1: Observe that for any R € 5;% R is strictly decreasing in [0, 4] and

strictly increasing in [k — £, k]. Suppose that there exist x1, x2 € Ay N [0 h] where
x1 = f(RN),x2 = f(RN) Then, N would manipulate f: either at RN via Ry if
X1 < xp orelse at Ry via Ry, otherwise. This is the desired contradiction. A similar
argument holds for Ay N [k — A, k]. This shows Step 1.
Step 2: No alternative in the interval (h, k — h) belongs to the range of f.
Proof of Step 2: Let#A y > 3 and by contradiction suppose that A N (h, k — h) # @.
Suppose firstthat Ay € (h, k —h). Then we get a contradiction to Theorem 2 since for
any triple ¢: x, y, z € Ay, there exist R>" and R*! € th and thus y ¢ A . Second,
consider the case such that Ay N ([0,A]U[k —h,k]) # @ and Ay N (h,k — h) #
@. We may have two subcases: (2.1) x € Ar N[0,h],z € Ay N[k — h, k], and
yeArN(h,k—h),and 22) x € Ay N[0,h],y,z € Ay N (h,k — h) (or else
z€ Ay N[k —h,kl,x,y € Af N (h, k — h)). For both cases, consider the triple 7:
x,y,z € Ay and observe that there does not exist RYM and R € th on the triple ¢
which contradicts Lemma 2. Thus, the only possibility is that A ¢ C [0, h]U[k — h, k]
which shows Step 2.

Combining the results in both Steps, we obtain that #A y < 2. O

5 Conclusions

We have highlighted the fact that, in environments where preferences are single-
dipped, bounds on the size of the ranges of social choice functions arise as necessary
conditions for their strategy-proofness. We have shown how these bounds result from
the interaction between the number of individuals and alternatives, and most impor-
tantly from the nature of the subdomains where the functions must be defined.

One important consequence of our research in this and other papers is a full char-
acterization of the family of group strategy-proof rules on the full domain of single-
dipped preferences.

The propositions on the bounds of the size of the ranges for functions defined on
different subdomains also allow us to exhibit quite unexpected results. One is the very
fact that such restrictions arise: this does not happen in other well studied domain
restrictions admitting strategy-proof rules, like the domain of single-peaked or sep-
arable preferences (see Moulin 1980; Barbera et al. 1991). The other is that, in a
very strong sense, the relationship between the size of single-dipped subdomains and
that of the ranges of strategy-proof rules defined on them is not necessarily mono-
tonic. We have exhibited one case where it is: this is the one where we compare the
three domains Dy & Din & D, for fixed k and h < %, no> % Those domains
are nested, and the maximal range size compatible with strategy-proofness indeed
increases for them as the domains shrink. However, we have also identified the three
domains th - Din G C D. for fixed k, and h < ’1 . For these three nested domains,
the adm1551ble range 51ze goes up, as we restrict the domain from D-. to Dy, and
then goes down if we continue restricting the domain from Dy, to ﬁkh. This definitely
shows that the interactions we have unearthed are non-trivial.
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